Microtubule-dependent membrane dynamics in Ustilago maydis
نویسندگان
چکیده
Long-distance trafficking of membranous structures along the cytoskeleton is crucial for secretion and endocytosis in eukaryotes. Molecular motors are transporting both secretory and endocytic vesicles along polarized microtubules. Here, we review the transport mechanism and biological function of a distinct subset of large vesicles marked by the G-protein Rab5a in the model microorganism Ustilago maydis. These Rab5a-positive endosomes shuttle bi-directionally along microtubules mediated by the Unc104/KIF1A-related motor Kin3 and dynein Dyn1/2. Rab5a-positive endosomes exhibit diverse functions during the life cycle of U. maydis. In haploid budding cells they are involved in cytokinesis and pheromone signaling. During filamentous growth endosomes are used for long-distance transport of mRNA, a prerequisite to maintain polarity most likely via local translation of specific proteins at both the apical and distal ends of filaments. Endosomal co-transport of mRNA constitutes a novel function of these membrane compartments supporting the view that endosomes function as multipurpose platforms.
منابع مشابه
Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity.
Many fungal pathogens undergo a yeast-hyphal transition during their pathogenic development that requires rearrangement of the cytoskeleton, followed by directed membrane traffic towards the growth region. The role of microtubules and their dynamic behavior during this process is not well understood. Here we set out to elucidate the organization, cellular role and in vivo dynamics of microtubul...
متن کاملMicrotubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis.
Growth of most eukaryotic cells requires directed transport along microtubules (MTs) that are nucleated at nuclear-associated microtubule organizing centers (MTOCs), such as the centrosome and the fungal spindle pole body (SPB). Herein, we show that the pathogenic fungus Ustilago maydis uses different MT nucleation sites to rearrange MTs during the cell cycle. In vivo observation of green fluor...
متن کاملPheromone-induced G2 arrest in the phytopathogenic fungus Ustilago maydis.
In the corn smut fungus Ustilago maydis, pathogenic development is initiated when two compatible haploid cells fuse and form the infectious dikaryon. Mating is dependent on pheromone recognition by compatible cells. In this report, we set out to evaluate the relationship between the cell cycle and the pheromone response in U. maydis. To achieve this, we designed a haploid pheromone-responsive s...
متن کاملKinesin from the plant pathogenic fungus Ustilago maydis is involved in vacuole formation and cytoplasmic migration.
A gene encoding the heavy chain of conventional kinesin (kin2) has recently been identified in the dimorphic fungus Ustilago maydis (Lehmler et al., 1997). From the phenotype of kin2 null-mutants it was concluded that Kin2 might be involved in vesicle traffic towards the tip. However, this model did not explain why kin2-null mutant hyphae were unable to create empty cell compartments that are n...
متن کاملCharacterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis
The biotrophic fungus Ustilago maydis, the causal agent of corn smut disease, uses numerous small secreted effector proteins to suppress plant defence responses and reshape the host metabolism. However, the role of specific effectors remains poorly understood. Here, we describe the identification of ApB73 (Apathogenic in B73), an as yet uncharacterized protein essential for the successful colon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2012